First and second order analysis for periodic random arrays using block bootstrap methods
نویسنده
چکیده
In the paper row-wise periodically correlated triangular arrays are considered. The period length is assumed to grow in time. The Fourier decomposition of the mean and autocovariance functions for each row of the matrix is presented. To construct bootstrap estimators of the Fourier coefficients two block bootstrap techniques are used. These are the circular version of the Generalized Seasonal Block Bootstrap and the Circular Block Bootstrap. Consistency results for both methods are presented. Bootstrap-t equal-tailed confidence intervals for parameters of interest are constructed. Results are illustrated by an example based on simulated data.
منابع مشابه
Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data
The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...
متن کاملOn the Second Order Behaviour of the Bootstrap of L_1 Regression Estimators
We consider the second-order asymptotic properties of the bootstrap of L_1 regression estimators by looking at the difference between the L_1 estimator and its first-order approximation, where the latter is the minimizer of a quadratic approximation to the L_1 objective function. It is shown that the bootstrap distribution of the normed difference does not converge (eit...
متن کاملBlock bootstrap for periodic characteristics of periodically correlated time series
This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalized Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual MBB does not preserve the...
متن کاملThe Bootstrap of the Mean for Dependent Heterogeneous Arrays
Presently, conditions ensuring the validity of bootstrap methods for the sample mean of (possibly heterogeneous) near epoch dependent (NED) functions of mixing processes are unknown. Here we establish the validity of the bootstrap in this context, extending the applicability of bootstrap methods to a class of processes broadly relevant for applications in economics and Þnance. Our results apply...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کامل